



# Shri Vile Parle Kelavani Mandal's MITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)

NAAC Reaccredited 'A' grade, CGPA: 3.57, Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India, Best College, University of Mumbai (2016-17)

# Affiliated to the **UNIVERSITY OF MUMBAI**

Program: T.Y. B.Sc.

**Course: BIOTECHNOLOGY** 

Semester : V & VI

Credit Based Choice System (CBCS) with effect from the Academic year 2020-21

### **PROGRAMME SPECIFIC OUTCOMES (PSO'S)**

On completion of the B.Sc-Biotechnology, the learners should be enriched with knowledge and be able to-

PO1: understand immunological methods and their application in different fields

PO2: conceputalize the regulation of major metabolic pathways and control

PO 3:understand advances in cell biology with special reference to progenitor cells, their importance in control of diseases, therapies and future applications

PO 4: Gains an in-depth knowledge of manufacturing principles and practices associated with dairy food products

PO 5: Learn the applications of molecular biology and recombinant DNA technology in various fields

PO 6: Understand the need to implement integrated applications of biotechnology for sustainable development as ecofriendly alternatives

PO 7: Understand the relevance of plant tissue culture techniques in production of secondary metabolites

PO 8: Understands the importance of the DNA forensics, molecular diagnostics, cloning techniques in the fields of breed development, disease resistant live stock and wildlife conservation.

### Preamble

Biotechnology is, in essence, the deciphering and use of biological knowledge. It is highly multidisciplinary since it has its foundations in many disciplines, including biology, microbiology, biochemistry, molecular biology, genetics, chemistry and chemical and process engineering. It may also be viewed as a series of enabling technologies

Biotechnology has been revolutionized by a range of new molecular innovations. Areas of human health, environment and food now heralding a new age of biotechnology. The field of biotechnology, combined with educational resources, industrial infrastructure and the pervasive influence of biological substances in everyday life, has set the stage for unprecedented growth in products, markets, and expectations.

Considering these breakthroughs in biotechnology the syllabus is essentially formulated to provide well-balanced and comprehensive overview of this growing field. The curriculum aims to provide a platform for students to enable them to recognize the need for applying biotechnology for the potential and benefit of mankind particularly in developing countries and emphasizing on the scientific and technological knowledge required to establish research and development of high excellence in this field.

### **Evaluation Pattern**

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

### a. Details of Continuous Assessment (CA)

25% of the total marks per course:

| Continuous Assessment | Details               | Marks    |
|-----------------------|-----------------------|----------|
| Component 1 (CA-1)    | TEST/ASSIGNMENT/ QUIZ | 15 marks |
| Component 2 (CA-2)    | TEST/ASSIGNMENT/ QUIZ | 10 marks |

### b. Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

| Question | Description         | Marks       | Total Marks |
|----------|---------------------|-------------|-------------|
| Number   |                     |             |             |
| Q1.      | Module I            | 15          | 15          |
| Q2       | Module II           | 15          | 15          |
| Q3       | Module III          | 15          | 15          |
| Q4       | Module IV           | 15          | 15          |
|          | Module I+II+ III+IV | 15          | 15          |
|          |                     | Total Marks | 75          |

Signature

Signature

Signature

HOD

Approved by Vice – Principal

Approved by Principal

| Program                                 | : Bachelor of                                                                                             | Science (B                                                   | iotechnolo                                             | ogy)                                               | Semeste            | r:5                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------------|
| Course: I                               | mmunology                                                                                                 |                                                              |                                                        |                                                    | Course             | Code: USMABT50                               |
| Teaching                                | Scheme                                                                                                    |                                                              |                                                        | Evaluatio                                          | on Scheme          |                                              |
| Lecture<br>(Hours j<br>week)            | Practical<br>per(Hours<br>per week)                                                                       | Tutorial<br>(Hours<br>per week)                              | Credit                                                 | Continuo<br>Assessme<br>Evaluatio<br>(Marks)       |                    | Term Er<br>lExaminations<br>(TEE)<br>(Marks) |
| 4                                       | 4                                                                                                         | -                                                            | 4+2                                                    | 25                                                 |                    | 75                                           |
| an<br>Course O<br>At the end<br>CO1:The | d its applicatio<br><b>Dutcomes:</b><br>l of the course<br>concepts of th<br>basic principl               | e students<br><u>n in medica</u><br>the student<br>e compone | with the kn<br>al diagnost<br>will be ga<br>nts and me | owledge of o<br>ics<br>in knowledg<br>echanisms of | e of:<br>immune re | esponses and its role<br>d their application |
|                                         | f Syllabus: (pe                                                                                           | er session j                                                 | plan)                                                  |                                                    |                    |                                              |
|                                         | Description                                                                                               |                                                              |                                                        |                                                    |                    | Duration                                     |
| 1                                       | Membrane rec                                                                                              | eptors for a                                                 | antigen                                                |                                                    |                    | 15 hours                                     |
| 2                                       | Overview of in                                                                                            | mmune res                                                    | ponses                                                 |                                                    |                    | 15 hours                                     |
| 3                                       | Mediators of t                                                                                            | he immune                                                    | responses                                              |                                                    |                    | 15 hours                                     |
| 4                                       | Immunologica                                                                                              | l methods                                                    | and applic                                             | ations                                             |                    | 15 hours                                     |
|                                         | Total                                                                                                     |                                                              |                                                        |                                                    |                    | 60 hours                                     |
| PRACTI                                  | CALS                                                                                                      |                                                              |                                                        |                                                    |                    | 60                                           |
| Page Break                              | DESCDI                                                                                                    |                                                              |                                                        |                                                    |                    |                                              |
| UNIT<br>Module 1                        | DESCRIP<br>Membran                                                                                        |                                                              | - for ortin                                            |                                                    |                    | <b>NO OF HOURS</b>                           |
|                                         | <b>T-Cell Re</b><br>Structure a<br>TCR-CD3<br>T-Cell Acc<br><b>B-Cell Re</b><br>Structure a<br>B-Cell – C | ceptor<br>nd Role of<br>Complex<br>cessory Me                | TCR<br>mbrane M<br>BCR<br>Complex                      | olecules                                           |                    |                                              |

|          | Organization and Inheritance of the MHC          |    |
|----------|--------------------------------------------------|----|
|          | Classes of MHC                                   |    |
| Module 2 | Overview of immune responses                     | 15 |
|          | Antigen recognition                              |    |
|          | Effector functions                               |    |
|          | Antigen Processing and Presentation              |    |
|          | Self-MHC Restriction of T Cells                  |    |
|          | Role of Antigen-Presenting Cells                 |    |
|          | Processing and Presentation Pathways:            |    |
|          | The Cytosolic Pathway                            |    |
|          | The Endocytic Pathway                            |    |
|          | Presentation of Non -peptide Antigens            |    |
| Module 3 | Mediators of the immune responses                | 15 |
|          | Complement system                                |    |
|          | The functions of complement                      |    |
|          | Pathways of complement activation                |    |
|          | Biological consequences of complement activation |    |
|          | Cytokines                                        |    |
|          | Properties of Cytokines                          |    |
|          | Cytokine Secretion                               |    |
| Module 4 | Immunological methods and applications           | 15 |
|          | Precipitation Reactions                          |    |
|          | Agglutination Reactions                          |    |
|          | Radioimmunoassay                                 |    |
|          | Enzyme-Linked Immunosorbent Assay                |    |
|          | Western Blotting                                 |    |
|          | Immunoprecipitation                              |    |
|          | Immunofluorescence                               |    |
|          | Flow Cytometry                                   |    |

### PRACTICAL I

- 1. Determination of antigen identity by Ouchterlony's method.
- 2. Detection of Typhoid using Widal test.
- 3. Determination of human blood group by ABO and Rh antigen
- 4. Enzyme-Linked Immunosorbent Assay
- 5. Western Blott technique
- 6. Complement fixation test
- 7. Coomb's test
- 8. Cytokine-based therapies in clinical use

### **Suggested Readings**

• Kuby Immunology, Kindt, J. T., Osborne, A. B. and Goldsby, A. R., 6th edition, 2007, W.H. Freeman and company

• Delves, Peter J.; Martin, Seamus J.; Burton, Dennis R.; Roitt, Ivan M. (2011). Roitt's Essential Immunology. Hoboken, NJ: Wiley-Blackwell.

| 0                                                                                                                                     | Program: Bachelor of Science (Biotechnolog<br>Course: Biochemistry                    |                                                                                                                        |                                                                                                                             |                                                                                                                          | Semester                                                                                  |                                                                                                     |                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                                                       |                                                                                       |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           | Code: USM                                                                                           | ABT502                                                         |
| Teaching Scheme                                                                                                                       |                                                                                       |                                                                                                                        |                                                                                                                             | Evaluation Scheme                                                                                                        |                                                                                           |                                                                                                     |                                                                |
| Lecture Practical                                                                                                                     |                                                                                       | Tutorial                                                                                                               |                                                                                                                             | Continuous                                                                                                               |                                                                                           | Term                                                                                                | Enc                                                            |
| (Hours p                                                                                                                              |                                                                                       | urs (Hours Credit Assessment                                                                                           |                                                                                                                             |                                                                                                                          | Examination                                                                               | ons                                                                                                 |                                                                |
| week)                                                                                                                                 |                                                                                       | per week)                                                                                                              | crean                                                                                                                       | Evaluation                                                                                                               | (CAE)                                                                                     | (TEE)                                                                                               |                                                                |
|                                                                                                                                       | per week)                                                                             | _                                                                                                                      |                                                                                                                             | (Marks)                                                                                                                  |                                                                                           | (Marks)                                                                                             |                                                                |
| 4                                                                                                                                     | 4                                                                                     | -                                                                                                                      | 4+2                                                                                                                         | 25                                                                                                                       |                                                                                           | 75                                                                                                  |                                                                |
| the biosynt<br>introduces<br>disorders of<br>metabolic<br>Course Ou<br>After comp<br>CO1 :Ov<br>regulation<br>CO2: The<br>disorders a | bletion of the overview of the<br>functions of g<br>ssociated with<br>Relationship be | bhydrates and<br>to the orgation<br>ystem. It a<br>he endocrine<br>course, the<br>biochemic<br>group I and<br>abnormal | nd lipids in panization, si<br>lso helps th<br>le messenger<br>student will<br>al events in<br>group II hor<br>endocrine fu | plant animals<br>gnificance, f<br>e learners to<br>s.<br>have a detail<br>carbohydrate<br>mones, their<br>unctions of th | and back<br>functions,<br>o understa<br>ed understa<br>and lipic<br>mechanis<br>a various | teria. The co<br>mechanism<br>and the regu-<br>standing of:<br>biosynthes<br>sms of actio<br>glands | burse also<br>and the<br>alation of<br>is and its<br>n and the |
|                                                                                                                                       |                                                                                       |                                                                                                                        | lon)                                                                                                                        |                                                                                                                          |                                                                                           |                                                                                                     |                                                                |
|                                                                                                                                       | Syllabus: (pe                                                                         | er session p                                                                                                           | Diall)                                                                                                                      |                                                                                                                          |                                                                                           | No of I                                                                                             | Jours                                                          |
|                                                                                                                                       | Description<br>Carbohydrat                                                            | matahali                                                                                                               | 3366                                                                                                                        |                                                                                                                          |                                                                                           | 15                                                                                                  | 10015                                                          |
| 1                                                                                                                                     | Carbonyurau                                                                           | e metadon                                                                                                              | 5111                                                                                                                        |                                                                                                                          |                                                                                           | 15                                                                                                  |                                                                |
| 2                                                                                                                                     | Lipid Metabo                                                                          | lism                                                                                                                   |                                                                                                                             |                                                                                                                          |                                                                                           | 15                                                                                                  |                                                                |
| -                                                                                                                                     |                                                                                       |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           | 10                                                                                                  |                                                                |
| 3                                                                                                                                     | Endocrinolog                                                                          | v-I                                                                                                                    |                                                                                                                             |                                                                                                                          |                                                                                           | 15                                                                                                  |                                                                |
|                                                                                                                                       |                                                                                       |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           |                                                                                                     |                                                                |
| 4                                                                                                                                     | Endocrinolog                                                                          | w-II•                                                                                                                  |                                                                                                                             |                                                                                                                          |                                                                                           | 15                                                                                                  |                                                                |
| т Ц                                                                                                                                   | Linuver moiog                                                                         | J-11.                                                                                                                  |                                                                                                                             |                                                                                                                          |                                                                                           | 13                                                                                                  |                                                                |
| r                                                                                                                                     | Fotal                                                                                 |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           | 60                                                                                                  |                                                                |
| PRACTIC                                                                                                                               |                                                                                       |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           | 60                                                                                                  |                                                                |
| Page Break                                                                                                                            |                                                                                       |                                                                                                                        |                                                                                                                             |                                                                                                                          |                                                                                           |                                                                                                     |                                                                |

| UNIT     | DESCRIPTION                                       | NO<br>HOURS | OF |
|----------|---------------------------------------------------|-------------|----|
| Module 1 | Carbohydrate metabolism                           | 15          |    |
|          | Biosynthesis of Starch and Sucrose and Regulation |             |    |
|          | Biosynthesis of Glycogen and Regulation           |             |    |

|          | Synthesis of Cell Wall Polysaccharides: Bacterial          |     |
|----------|------------------------------------------------------------|-----|
|          |                                                            |     |
|          | Peptidoglycan                                              |     |
|          | Conversion of Galactose to Glucose, Galactosemia           | 1 5 |
| Module 2 | Lipid Metabolism                                           | 15  |
|          | Biosynthesis of Fatty Acids (even and unsaturated) and its |     |
|          | regulation                                                 |     |
|          | Biosynthesis of Triacylglycerol                            |     |
|          | Biosynthesis of Membrane Phospholipids:                    |     |
|          | Glycerophospholipids (Bacteria and eukaryotes) and         |     |
|          | sphingolipids                                              |     |
|          | Cholesterol Biosynthesis, Regulation and Transport         |     |
| Module 3 | Endocrinology-I:                                           | 15  |
|          | Endocrine Hormones: Introduction                           |     |
|          | Classification of hormones based on chemical nature and    |     |
|          | mode of action                                             |     |
|          | Group I hormones: Mechanism of action                      |     |
|          | Storage, release, transport, functions and disorders of -  |     |
|          | Thyroid hormones –TSH, T3 and T4                           |     |
|          | Adrenal cortex hormones – Glucocorticoids and              |     |
|          | mineralocorticoids                                         |     |
|          | Hormones of Gonads – Androgen, estrogen, progesterone.     |     |
| Module 4 | Endocrinology-II:                                          | 15  |
|          | Storage, Release, transport, functions and disorders of –  |     |
|          | Hypothalamic hormones,                                     |     |
|          | Anterior Pituitary hormones – GH & stimulating hormones    |     |
|          | (hCG, LH, FSH, TSH)                                        |     |
|          | Posterior pituitary hormones – ADH and oxytocin            |     |
|          | Pancreatic hormones – Insulin and Glucagon                 |     |
|          | Adrenal medulla hormones – epinephrine and                 |     |
|          | norepinephrine                                             |     |

### PRACTICAL I

- 1. Estimation of glucose by GOD-POD method
- 2. Study of starch granules
- 3. Estimation of starch by Willstater's method
- 4. Estimation of cholesterol
- 5. Separation of fatty acids by TLC
- 6. Separation of sugars by paper chromatography
- 7. Study of working of a Glucometer
- 8. Estimation of glucose in urine by Benedict quantitative method

### **Suggested Readings**

1. Lehninger, Principles of Biochemistry. 5th Edition (2008), David Nelson & Michael Cox, W.H. Freeman and company, NY

2. Biochemistry, U Satyanarayana 2nd edition Books and Allied pvt Ltd

3. Fundamentals of Biochemistry. 3rd Edition, Donald Voet & Judith Voet, John Wiley and Sons, I. USA

4. Harper's Illustrated Biochemistry, Twenty-Eighth Edition, Robert K. Murray, et.al. The McGraw-Hill Companies, Inc

5. Guyton, Text book of Medical Physiology, Saunders Publishers, 12th edition, 2010.

6. Textbook of Biochemistry with Clinical Correlations, 7th Edition, Thomas M. Devlin, January 2010,

7. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders

Page Break

| Program: B.A./ B.Sc . / B.Com(2021-22) |                                  |                              | Semeste | Semester:                                        |                                                                           |  |
|----------------------------------------|----------------------------------|------------------------------|---------|--------------------------------------------------|---------------------------------------------------------------------------|--|
| Course: Cell Biology                   |                                  |                              | Course  | Code: USAMBT508                                  |                                                                           |  |
| Teaching Scheme                        |                                  |                              |         | Evaluation Scheme                                |                                                                           |  |
| Lecture<br>(Hours per<br>week)         | Practical<br>(Hours<br>per week) | Tutorial (Hours<br>per week) | Credit  | Continuous<br>Assessment<br>(CA)<br>(Marks - 25) | Semester End Examinations<br>(SEE)<br>(Marks-<br>75 in Question<br>Paper) |  |
| 4                                      | 3                                |                              | 4+1.5   | 25                                               | 75                                                                        |  |
| Learning                               | Objectives                       | •                            |         | •                                                |                                                                           |  |

### ng Objectives:

- To make the student understand cell structure and function and movements and build an idea how eukaryotic cells movement works at the molecular level and the outcomes in embryo development
- To provide an overview of regulation of cellular processes, signaling and proliferation in eukaryotic cells.
- To introduce some of the major ideas and experimental approaches in cell and molecular biology with reference to cancer, cancer cell behavior as well as the stem cells and their future applications in biotechnology and regenerative medicine

### **Course Outcomes:**

After completion of the course, learners would be able to:

CO 1 : how cell movement and cell-cell communication occur and the cell adhesion between cell takes place and homeostasis

CO 2 : the structure of membranes and intracellular compartments and relate these to function. Cellular matrix, importance and mechanisms of signal transduction

CO 3 :omics of cells and the processes that control eukaryotic cell cycle and onset of cancer as the failure of cell death or apoptosis

CO 4: Student will understand advances in cell biology special reference to progenitor cells, their importance in control of diseases, therapies and future applications

### **Outline of Syllabus: (per session plan)**

| Module | Description                                 | No of Hours |  |
|--------|---------------------------------------------|-------------|--|
| 1      | Cell dynamics                               | 15          |  |
| 2      | Cell membranes and dynamic properties       | 15          |  |
| 3      | Cells – abnormalities (cancer) technologies | 15          |  |
| 4      | Pregenitor cells and future prospects       | 15          |  |
|        | Total                                       | 60          |  |
| PRACTI | PRACTICALS                                  |             |  |

| Unit     | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. of<br>Hours/Credits |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Module 1 | Cell DynamicsCell movement: Mechanisms and regulation of<br>cell migration: Role actin polymerization, small<br>GTPases Rho, Rac and Cdc42.Directing cell<br>motility, Group migration, sheet migration:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                      |
|          | <b>Tissue homeostasis:</b> Turnover and maintenance of cells,<br>Apoptosis. Cellular asymmetry and homeostasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| Module 2 | <ul> <li>Biological Membrane Structure and Function<br/>Sanger and Nicholson model, lipids and proteins<br/>and their role determine membrane identity</li> <li>Membrane Trafficking- overview of the<br/>endomembrane system and membrane trafficking,<br/>membrane carriers, processes - secretory and<br/>endocytic pathways,</li> <li>Membrane Transporters and Ion Channels-<br/>Membrane transport and transport proteins -Ion<br/>channel gating and channel permeability and<br/>selectivity - defects in processes leads to disease</li> <li>Cell recognition and Extracellular Matrix:<br/>Composition, molecules that mediate cell<br/>adhesion,</li> <li>Signaling From Membranes -general principles of<br/>signaling-signal termination; receptors (G-protein-<br/>coupled receptors) - membranes in organization of<br/>signaling pathways.</li> </ul> | 15                      |
| Module 3 | <b>Cells – abnormalities (cancer) technologies</b><br>Analysis and integration of individual<br>Tumor formation and progression: Causes of<br>cancer. Multi-step progression and the multiple-<br>hit hypothesis cellular changes and the stages in<br>cancer progression- DNA repair, drug metabolism<br>Translocations and cancer-Predisposition to<br>cancer. e.g. in retinoblastomas and breast cancers-<br>Tissue invasion and metastasis and Angiogenesis<br><b>Molecular basis of tumours</b> Tumour suppressor<br>proteins p53 and RB - Epigenetic, chromatin and                                                                                                                                                                                                                                                                                             | 15                      |

|          | gene regulation changes in cancer - Relationship<br>between oncogenes and signal transduction<br>pathways Pathway crosstalk and relationship to<br>tumourogenesis, Apoptosis and its relationship to<br>cancer• Cancer diagnosis, cures and possible<br>therapies.                                                |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Module 4 | <b>Pregenitor cells and future prospects</b><br>Introduction, definitions of stem cells Potency and<br>overview of different stem cell types (embryonic,<br>fotal adult (tissue and concer); stem cell proportion                                                                                                 |  |
|          | fetal, adult/tissue and cancer); stem cell properties<br>and examples<br>Induced Pluripotent Stem (IPS) Cells, Embryoid<br>body formation; Mesenchymal Stem Cells:<br>Haematopoietic stem cells, Tissue-specific stem<br>cells: original generation; their properties;<br>potential for use for disease modelling |  |
|          | /toxicology/drug testing and cell therapy                                                                                                                                                                                                                                                                         |  |

## PRACTICAL I (If applicable)

- 1. Study the effect of temperature and organic solvents on semi permeable membrane.
- 2. Demonstration of dialysis.
- 3. Cell fractionation and determination of enzyme activity in organelles using sprouted seed or any other suitable source.
- 4. Detailed Study of structure of any Eukaryotic cell.
- 5. Microtomy: Fixation, block making, section cutting, double staining of animal tissues like liver, oesophagus, stomach, pancreas, intestine, kidney, ovary, testes.
- 6. Cell division in onion root tip
- 7. Preparation of Nuclear, Mitochondrial & cytoplasmic fractions
- 8. Study of cancer cell characteristics

### **Suggested Readings**

- 1. The Molecular Biology of Cell (5<sup>th</sup> edition)- by Bruce Alberts
- 2. Molecular Biology (7<sup>th</sup> edition)- by Lodish
- 3. Lehninger, Principles of Biochemistry by David L Nelson and Michael Cox. Watson, J. D. (2008).
- 4. Krebs, J. E., Lewin, B., Kilpatrick, S. T., & Goldstein, E. S. (2014). Lewin's Genes XI.Burlington, MA: Jones & Bartlett Learning.

| Program:                         | <b>B.Sc Biot</b>                 | echnology (202               | 1-22)                  |      | Semeste                              | r: 5                                                                      |
|----------------------------------|----------------------------------|------------------------------|------------------------|------|--------------------------------------|---------------------------------------------------------------------------|
| Course: Industrial Biotechnology |                                  |                              | Course Code: USMABT504 |      |                                      |                                                                           |
| Teaching Scheme                  |                                  |                              |                        | Ev   | aluation Scheme                      |                                                                           |
| Lecture<br>(Hours per<br>week)   | Practical<br>(Hours<br>per week) | Tutorial (Hours<br>per week) | Credit                 | Asse | tinuous<br>ssment<br>CA)<br>ks - 25) | Semester End Examinations<br>(SEE)<br>(Marks-<br>75 in Question<br>Paper) |
| 4                                | 3                                |                              | 2.5 + 1.5              |      | 25                                   | 75                                                                        |

This course aims to enable students to enter industry with an appropriate level of understanding of the dairy, brewery and food sector products, processes and the need for downstream processing for product manufacturing.

### **Course Outcomes:**

After completion of the course, learners would be able to:

**CO1**.Gain an in-depth understanding of the manufacturing principles and practices associated with dairy food products

**CO2.** Possess a comprehensive knowledge of the science and technology involved in various fermentation processes

**CO3.** Develop an understanding of the process control, upstream and downstream processing stages in an industry

**CO4.** Demonstrate a level of comprehension of Food technology concepts and apply critical thinking and problem-solving skills to address challenges in the food industry.

### **Outline of Syllabus: (per session plan)**

| Module | Description             | No of Hours |
|--------|-------------------------|-------------|
| 1      | Dairy technology        | 15          |
| 2      | Fermentation technology | 15          |
| 3      | Downstream processing   | 15          |
| 4      | Food technology         | 15          |
|        | Total                   | 60          |
| PRACTI | CALS                    |             |

| Unit     | Торіс                                                                                                                                                                                                                          | No. of<br>Hours/Credits |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Module 1 | Dairy technologyMilk: Principle components, structural elements.Processing of Milk: PasteurizationMethods for determining quality of milk:Methylene blue and Resazurin reductase test, PhosphatasetestFermented milk products: | 15                      |

|           | Cheese:                                                    |    |
|-----------|------------------------------------------------------------|----|
|           | Starter culture                                            |    |
|           | Types of cheese                                            |    |
|           | Production process                                         |    |
|           | Butter:                                                    |    |
|           | Starter culture                                            |    |
|           |                                                            |    |
|           | Types of butter                                            |    |
|           | Production process                                         |    |
|           | Yogurt: Types and Production process                       |    |
| Module 2  | Fermentation technology                                    | 15 |
|           | Wine                                                       |    |
|           | Raw materials                                              |    |
|           | Processing in wine making                                  |    |
|           | Fermentation                                               |    |
|           | Ageing, storage, clarification, packaging                  |    |
|           | Beer Brewing                                               |    |
|           | Types of Barley beers                                      |    |
|           | Raw Materials for brewing                                  |    |
|           | Brewing Process                                            |    |
|           | Fermentation                                               |    |
|           | Laagering and packaging                                    |    |
|           | Acetic Acid Fermentation                                   |    |
|           | Alcoholic fermentation                                     |    |
|           |                                                            |    |
|           | Acetic acid fermentation                                   |    |
|           | Recovery and purification                                  |    |
|           | Fermented vegetables                                       |    |
|           | Basic vegetable fermentation techniques                    |    |
|           | Production of some important Fermented vegetables          |    |
| Module 3  | Downstream processing                                      | 15 |
|           | <b>Recovery and purification methods of fermentation</b>   |    |
|           | products                                                   |    |
|           | Removal of microbial cells and solid Matters-Floatation,   |    |
|           | Precipitation, Filtration, Centrifugation                  |    |
|           | Isolation of product- Cell disruption methods              |    |
|           | Product Purification- Chromatography                       |    |
|           | <b>Product polishing</b> – Crystallization, drying         |    |
| Module 4  | Food technology                                            | 15 |
| viouuie 4 | Principles of food preservation                            | 10 |
|           | Control of microorganisms in food                          |    |
|           | -                                                          |    |
|           | Physical methods of food preservation                      |    |
|           | Chemical methods                                           |    |
|           | Food Adulteration and food safety                          |    |
|           | Types of adulterants                                       |    |
|           | Detection methods of food adulterants in common food items |    |
|           | - spices, tea-coffee, grains                               |    |
|           | Aspects of food safety- HACCP, AGMARK                      |    |
| TOTAL     |                                                            | 60 |

# PRACTICAL I (If applicable)

- 1. Microbiological analysis of milk
- 2. Determination of efficiency of Pasteurization
- 3. Determination of titrable acidity
- 4. Detection of food adulterants
- 5. Isolation of spoilage causing organism from food.
- 6. Estimation of alcohol content in the sample.
- 7. Determination of TDT, TDP of spoilage causing organism.
- 8. Determination of MIC of a preservative.

### **Suggested Readings**

### **Text Books:**

1. Adam M, Dick M. Food microbiology-An introduction

2. Prescott and Dunn's "Industrial Microbiology' (1982) 4th edition, McMillan Publishers

3. Okafor Nduka (2007) "Modern Industrial Microbiology and Biotechnology", Science Publications Enfield, NH, USA.

4. Stanbury P. F., Whitaker A. & Hall S. J., (1997), "Principles of Fermentation Technology", 2nd edition, Aditya Books Pvt. Ltd, New Delhi.

5. Food processing and preservation – Subbulakshmi, G. Shobha, A. Udipi, New Age International (P) Ltd., 2006.

### **Reference Books:**

**1.** Food Microbiology, An introduction, Thomas J. Montville, Karl R. Matthews, Kalmia E. Kniel, Washington, DC

### 2. Sambamurthy K and Aushotosh Kar, 2006. Pharmaceutical biotechnology

| Program: B.Sc. Biotechnology (2020-21) | Semester: V              |  |
|----------------------------------------|--------------------------|--|
| Course: MOLECULAR BIOTECHNOLOGY        | Course Code: USMABT 505  |  |
| Teaching Scheme                        | <b>Evaluation Scheme</b> |  |

| Lecture<br>(Hours per<br>week) | Practical<br>(Hours per<br>week) | Tutori<br>al<br>(Hours<br>per<br>week) | Credit  | Continuous<br>Assessment<br>(CA)<br>(Marks - 25) | Semester End<br>Examinations (SEE)<br>(Marks-<br>75 in<br>Question Paper) |
|--------------------------------|----------------------------------|----------------------------------------|---------|--------------------------------------------------|---------------------------------------------------------------------------|
| 04                             | 04                               |                                        | 02 + 02 | 25 Marks                                         | 75 Marks                                                                  |

- i. Give an idea of various approaches in conducting genetic engineering that can be applied in career in biological research as well as in biotechnology industries.
- ii. Introduce the students to various methods used in genetic engineering and gene cloning through tools of molecular biology
- iii. To Impart knowledge of various applications of recombinant DNA technology in the fields like forensic sciences and diagnostics

### **Course Outcomes:**

After completion of the course, learners would be able to:

**CO1:** Get the knowledge of mobile genetic elements in prokaryotes and eukaryotes **CO2:** Learn the principles of recombinant DNA technology and its applications for understanding and application in future research.

**CO3:** Learn the applications of molecular biology and recombinant DNA technology in various fields so that the students should be able to take up careers in the field of Biotechnology

| Module       | Description                              | No of |  |
|--------------|------------------------------------------|-------|--|
|              |                                          | Hours |  |
| 1            | Transposable Elements, Genomic Libraries | 15    |  |
| 2            | Tools in molecular biology               | 15    |  |
| 3            | Applications of r- DNA technology        | 15    |  |
| 4            | Molecular Diagnostics                    | 15    |  |
| <b>`otal</b> | ·                                        | 60    |  |

| Unit     | Торіс                                                            | No. of<br>Hours |
|----------|------------------------------------------------------------------|-----------------|
| Module 1 | L /                                                              | 15              |
|          | Transposons in prokaryotes and eukaryotes- IS elements, compo    |                 |
|          | site and non-composite transposons, Mu, Eukaryotic transposones. |                 |
|          | Induction of mutations due to Transposones                       |                 |
|          | Genetic mapping in bacteria and Bacteriophages                   |                 |

|          | Genomic Libraries- Construction and screening of genomic DNA li       |    |
|----------|-----------------------------------------------------------------------|----|
|          | braries, cDNA libraries, complementation of mutations                 |    |
| Module 2 | Tools in molecular biology                                            | 15 |
|          | Detection of nucleic acids – Methods of labelling of probes-          |    |
|          | radioactive, non radioactive labelling, applications                  |    |
|          | Isolation and amplification of specific nucleic acid sequences – PCR  |    |
|          | and types, primer designing, contamination, mis – priming, PCR        |    |
|          | product cleanup, applications                                         |    |
|          | Methods of DNA sequencing, Isolation of human genes by                |    |
|          | chromosome jumping and chromosome walking.                            |    |
| Module 3 | Applications of r- DNA technology                                     | 15 |
|          | Method and applications of DNA fingerprinting, Molecular markers      |    |
|          | -                                                                     |    |
|          | mini and microsatellites, RNAi, ZNF, marker assisted selection        |    |
|          | Analysis of DNA polymorphism and Identification: RFLP, RAPD,          |    |
|          | AFLP techniques and applications. Methods of DNA sequencing,          |    |
|          | Isolation of human genes by chromosome jumping and chromosome         |    |
|          | walking.                                                              |    |
|          | Human genome mapping and applications DNA barcoding, genome           |    |
|          | editing and applications                                              |    |
| Module 4 |                                                                       | 15 |
|          | Introduction to Molecular Diagnostics: History, Areas and future      |    |
|          | prospects.                                                            |    |
|          | Characteristics and analysis of nucleic acids and proteins - Methods  |    |
|          | of extraction of nucleic acids and proteins, Blotting and             |    |
|          | Hybridization techniques in recombinant DNA technology – FISH,        |    |
|          | GISH, DNA microarray, Y chromosome analysis, Mitochondrial            |    |
|          | genome                                                                |    |
|          | Molecular Diagnostics for diseases, forensic studies, Gene therapy -  |    |
|          | types, applications.                                                  |    |
|          | Genetic Counseling, Genetic testing – diagnostic and carrier testing, |    |
|          | case studies, Ethical, Social and legal issues to molecular genetic   |    |
|          | testing                                                               |    |
|          |                                                                       |    |

# PRACTICAL I (If applicable)

- i. Study of mobile genetic elements
- ii. Extraction of genomic DNA from bacteria
- iii. Isolation of plasmid bearing culture and extraction of plasmid DNA and demonstration of its presence
- iv. Transformation of bacteria using plasmid DNA
- v. Screening of transformants using Replica plate technique
- vi. Construction of restriction map and problems
- vii. Sequencing of DNA by Sanger's method
- viii. Study of RFLP and RAPD techniques
- ix. Study of Southern blotting technique

**Suggested Readings** 

- 1. i-Genetics by Peter Russell 5th Edition
- 2. Biotechnology-Fundamentals and Applications by S.S.Purohit, 3rd edition
- 3. Molecular Biotechnology Glick, B.R, Pasternak, J.J Patten, 4th Edition ASM press
- 4. Advanced Biotechnology R.C. Dubey, S. Chand Publications
- 5. Genetic Engineering (2002) Sandhya Mitra, McGraw Hill Publication
- 6. Biotechnology (2002) S. S. Purohit, Agrobios Publishers
- 7. Genetic Engineering (2009) Smita Rastogi and Neelam Pathak, Oxford Higher Education

| Program: Bachelor of Science (Biotechnology) |            | Semester : 6           |  |
|----------------------------------------------|------------|------------------------|--|
| Course : Medical Biotechnology               |            | Course Code: USMABT601 |  |
| Teaching Scheme                              | Evaluation | Scheme                 |  |

| Lecture<br>(Hours p<br>week)                           | Practical<br>er(Hours<br>per week                                                             | (Hours                                                                                    | Credit                                                    | Continuous<br>Assessment<br>Evaluation (<br>(Marks)                                             | and Ex<br>(CAE) (T                       | erm<br>caminations<br>EE)<br>larks) | End   |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------|-------|
| 4                                                      | 4                                                                                             | -                                                                                         | 4+2                                                       | 25                                                                                              | 75                                       |                                     |       |
| Learning                                               | Objectives:                                                                                   | • • •                                                                                     |                                                           |                                                                                                 |                                          |                                     | 1     |
| •                                                      | uses and med<br>To dev                                                                        | chanisms of t<br>elop diagno                                                              | heir pathog<br>stic skills                                | asis for underst<br>genicity.<br>, including th<br>ctious diseases                              | U U                                      | C                                   |       |
| Course O                                               | itcomes:                                                                                      |                                                                                           |                                                           |                                                                                                 |                                          |                                     |       |
| CO1: 7<br>promo<br>CO2 : 2<br>and co<br>CO3 :<br>measu | The underly<br>ting and pro<br>Assess treatron<br>mmon mech<br>Explain inter<br>re and vaccin | ing science o<br>tecting health<br>nent strategio<br>nanisms of an<br>rventions em<br>nes | f human h<br>n<br>es includin<br>timicrobia<br>aployed to | in knowledge of<br>ealth and diseas<br>g the appropriat<br>l action and resi<br>prevent disease | se including<br>te use of an<br>istance. | ntimicrobial a                      | gents |
|                                                        | -                                                                                             | per session p                                                                             | olan)                                                     |                                                                                                 |                                          |                                     |       |
| Module                                                 | Description                                                                                   |                                                                                           |                                                           |                                                                                                 |                                          | Duration                            |       |
| 1                                                      | Bacteriology                                                                                  | cteriology                                                                                |                                                           |                                                                                                 |                                          |                                     |       |
| 2                                                      | Virology                                                                                      |                                                                                           |                                                           |                                                                                                 |                                          | 15 hours                            |       |
| 3                                                      | Principles of                                                                                 | antimicrobia                                                                              | al therapy                                                |                                                                                                 |                                          | 15 hours                            |       |
| 4                                                      | Medical diag                                                                                  | gnostics and t                                                                            | herapeutic                                                | S                                                                                               |                                          | 15 hours                            |       |
| r                                                      | Total                                                                                         |                                                                                           |                                                           |                                                                                                 |                                          | 60 hours                            |       |
| PRACTIC                                                | CALS                                                                                          |                                                                                           |                                                           |                                                                                                 |                                          | 60                                  |       |
| Page Break                                             |                                                                                               |                                                                                           |                                                           |                                                                                                 |                                          |                                     |       |
| UNIT                                                   | DESCRI                                                                                        | IPTION                                                                                    |                                                           |                                                                                                 |                                          | NO<br>HOURS                         | OF    |
| Module 1                                               | Bacterio                                                                                      | 0.                                                                                        |                                                           |                                                                                                 |                                          | 15                                  |       |
|                                                        |                                                                                               | s of the respi                                                                            |                                                           |                                                                                                 |                                          |                                     |       |
|                                                        |                                                                                               | s of the gastr                                                                            |                                                           |                                                                                                 |                                          |                                     |       |
| Module 2                                               |                                                                                               | s of the urog                                                                             | enital tract                                              |                                                                                                 |                                          | 15                                  |       |
| Module 2                                               | Virus: in<br>Viral rep<br>Viral div<br>Overviev<br>Overviev                                   | troduction, st<br>lication<br>ersity<br>v of bacterial<br>v of plant vir<br>v of animal v | viruses<br>uses                                           | d growth                                                                                        |                                          | 15                                  |       |
| Module 3                                               | Principle<br>Antibacte<br>Antifung                                                            | es of antimic<br>erial agents<br>al agents<br>sitic agents                                | robial the                                                | rapy                                                                                            |                                          | 15                                  |       |

|          | Interactions between microbes and drugs |    |
|----------|-----------------------------------------|----|
|          | Interactions between drugs and hosts    |    |
| Module 4 | Medical diagnostics and therapeutics    | 15 |
|          | Diagnostic methods                      |    |
|          | Phenotypic methods                      |    |
|          | Genotypic methods                       |    |
|          | Immunologic methods                     |    |
|          | Therapeutics                            |    |
|          | Human interferons                       |    |
|          | Leptin                                  |    |
|          | Monoclonal antibodies                   |    |

### **PRACTICAL I**

- 1. Study of respiratory tract infections
- 2. Study of gastrointestinal tract infections
- 3. Study of gastrointestinal tract infections
- 4. Study of antibiotic sensitivity test using agar cup method
- 5. Study of antibiotic sensitivity test using paper disc method
- 6. Study of antibiotic sensitivity test using ditch method
- 7. Study of synergistic action of two drugs

#### **Suggested Readings**

1. Bernard R. Glick Terry L. Delovitch Cheryl L. Patten (2014) Medical Biotechnology ASM press, Washington DC

2. Talaro, K. P., & Chess B. (2012). Foundations in Microbiology (8th ed.) McGraw-Hill, New York

3. Patricia M. Tille (2013) Bailey & Scott's Diagnostic Microbiology (13th Edition) Elsevier

4. Goering, R. V., & Mims, C. A. (2008). Mims' medical microbiology. Philadelphia, PA: Mosby Elsevier.Page Break

| Program: Ba | achelor of S | Semester : 6 |        |                                                 |                |                                          |     |
|-------------|--------------|--------------|--------|-------------------------------------------------|----------------|------------------------------------------|-----|
| Course : En | vironment    | al Biotechr  |        | Course Code: USMABT602                          |                |                                          |     |
| Teaching Sc | heme         |              |        | Evaluation Scheme                               |                |                                          |     |
| (Hours per  |              | <b>C</b>     | Credit | Continuou<br>Assessmen<br>Evaluation<br>(Marks) | t and<br>(CAE) | Term<br>Examinations<br>(TEE)<br>(Marks) | End |
| 4           | 4            | -            | 4+2    | 25                                              |                | 75                                       |     |

This course firstly explores the diversity, function and ecological adaptations of microorganisms within the environment.

The course will enable the student to understand the importance of microbial ecology as an integral part of environmental processes. The course also provides an overview of biological significance of components of environment air, soil, water and their potential in biotechnology.

It will help the learner to understand the pertinent design concepts and operations of aerobic and anaerobic bioprocesses and proper selection of technology for remediation and pollution control.

It explores the applications of biological system in the environment, their products and processes for the benefit of human society, the environment and sustainable development.

### **Course Outcomes:**

After completion of the course, the student will have a detailed understanding of:

CO 1:The principles of microbial ecology, the importance of microbial diversity in environmental systems, interaction of microbial population with the environment, microbial life in extreme environments and the method used to study the microbial ecology for practical applications in environmental biotechnology

CO2:The modern trends in environmental biotechnology, such as treatment and disposal of effluents, remediation technologies, and will be able to describe existing and emerging technologies that are important in the area of environmental biotechnology CO 3: Few examples of integrated applications of biotechnology for sustainable

| Outline of Syllabus: (per session plan) |                                                     |             |  |  |
|-----------------------------------------|-----------------------------------------------------|-------------|--|--|
| Module                                  | Description                                         | No of Hours |  |  |
| 1                                       | Ecosystems and Metagenomics                         | 15          |  |  |
| 2                                       | Effluent treatment systems                          | 15          |  |  |
| 3                                       | Remediation Technologies                            | 15          |  |  |
| 4                                       | Integrated Applications for sustainable development | 15          |  |  |
|                                         | Total                                               | 60          |  |  |
| PRACTI                                  | ICALS                                               | 60          |  |  |

#### Page Break

| UNIT     | DESCRIPTION                  | NO (<br>HOURS | OF |
|----------|------------------------------|---------------|----|
| Module 1 | Ecosystems and Metagenomics: | 15            |    |
|          | General Ecological Concepts  |               |    |

|           | <b>Major Microbial Habitats and Diversity</b><br>The Microbial Environment                                                                                                                     |    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|           | Terrestrial Environments                                                                                                                                                                       |    |
|           | Aquatic Environments                                                                                                                                                                           |    |
|           | Microbial community profiling and Metagenomics                                                                                                                                                 |    |
|           | Culture-Dependent Analyses of Microbial                                                                                                                                                        |    |
|           | Communities                                                                                                                                                                                    |    |
|           | Culture-Independent Analyses of Microbial                                                                                                                                                      |    |
|           | Communities                                                                                                                                                                                    |    |
|           | Measuring Microbial Activities in Nature                                                                                                                                                       |    |
| Module 2  | Effluent treatment systems:                                                                                                                                                                    | 15 |
|           | Introduction                                                                                                                                                                                   |    |
|           | Types of waste water                                                                                                                                                                           |    |
|           | Characteristics of wastewater                                                                                                                                                                  |    |
|           | Dissolved oxygen concentration as indicator of water                                                                                                                                           |    |
|           | quality                                                                                                                                                                                        |    |
|           | Processes for domestic and industrial effluent                                                                                                                                                 |    |
|           | treatment                                                                                                                                                                                      |    |
|           | Primary treatment process                                                                                                                                                                      |    |
|           | Secondary treatment process                                                                                                                                                                    |    |
|           | Tertiary treatment process                                                                                                                                                                     |    |
|           | Biosystems for industrial effluent treatment.                                                                                                                                                  |    |
|           | Aerobic processes                                                                                                                                                                              |    |
|           | Anaerobic processes                                                                                                                                                                            |    |
|           | Disposal of effluents                                                                                                                                                                          |    |
| Module 3  | Remediation Technologies                                                                                                                                                                       | 15 |
|           | Bioremediation Technology                                                                                                                                                                      |    |
|           | Introduction to Bioremediation                                                                                                                                                                 |    |
|           | Types of Bioremediaton                                                                                                                                                                         |    |
|           | In-situ Bioremediation                                                                                                                                                                         |    |
|           | Ex-situ Bioremediation                                                                                                                                                                         |    |
|           | Phytoremediation                                                                                                                                                                               |    |
|           | Phytoremediation                                                                                                                                                                               |    |
|           | Factors Influencing Phytoremediation                                                                                                                                                           |    |
| Module 4  | Types of Phytoremediation                                                                                                                                                                      | 15 |
| wiodule 4 | Integrated Applications for sustainable                                                                                                                                                        | 15 |
|           | development<br>Sustainable energy:                                                                                                                                                             |    |
|           | 65                                                                                                                                                                                             |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           |                                                                                                                                                                                                |    |
|           | Bioenergy from Wastes<br>Biofuels- Biodiesel, Bioalcohols<br>MFCs<br><b>Pollution abatement and odour control</b><br>Biosorbents,<br>Bioscrubbers,<br>Biobeds<br><b>Eco-friendly products:</b> |    |

| Biosurfactants |  |
|----------------|--|
| Biopolymers    |  |
| Bioplastics    |  |

### PRACTICAL

- 1. Study of Raw and Treated sewage
- 2. Determination of BOD
- 3. Determination of COD
- 4. Study of soil microflora
- 5. Study of air microflora
- 6. Demonstration of soil ecosystem by Winogradsky's Column
- 7. Enrichment and isolation of phenol degraders
- 8. Study of bioremediation
- 9. Extraction of Biopolymer

### Suggested Readings

1. Brock Biology of Microorganisms (14th edn). Michael T. Madigan, John M. Martinko. Pearson NY

2. Principles of fermentation technology P.F. Stanbury & Whitaker Pergamon Press, II Ed, Butterworth Heinemann-Elsevier, 2005.

3. Environmental Biotechnology - Theory and Application – M. H. Fulekar: CRC Press and Science Publisher, USA

4. Introduction To Environmental Biotechnology, Third Edition A.K. Chatterji, PHI Learning Private Limited, New Delhi

5. Environmental Microbiology R.M Maier, I.L. Pepper and C. P. Gerba, Academic Press. (2000)

6. Environmental Biotechnology: Basic Concepts and Applications. 2006, Indu Shekhar Thakur, I. K. International Pvt Ltd

7. Environmental Biotechnology Allan Scragg Oxford University press

8. Environmental Biotechnology S.D. Jogdand (Industrial pollution management) Himalaya Publishing House

| Program: B.Sc . bIOTECHNOLOGY  |                                  |                              | Semester: VI |                                                  |                                                                           |
|--------------------------------|----------------------------------|------------------------------|--------------|--------------------------------------------------|---------------------------------------------------------------------------|
| Course: ANIMAL BIOTECHNOLOGY   |                                  |                              | GY           | Course Code: USMABT608                           |                                                                           |
| Teaching Scheme                |                                  |                              |              | Ev                                               | aluation Scheme                                                           |
| Lecture<br>(Hours per<br>week) | Practical<br>(Hours<br>per week) | Tutorial (Hours<br>per week) | Credit       | Continuous<br>Assessment<br>(CA)<br>(Marks - 25) | Semester End Examinations<br>(SEE)<br>(Marks-<br>75 in Question<br>Paper) |
| 4                              | 1.5                              |                              | 2.5          | 25                                               | 75                                                                        |

- Identification and characterization of animal breeds,
- Understand the Developing DNA based diagnostics and genetically engineered vaccines for animals, Studying animal genomics and its varied applications
- To give a view of embryo transfer technology, cloning, transgenic animals
- To understand the need for conservation of wild life and assess bio processing technologies in other import areas of animal biotechnology

### **Course Outcomes:**

After completion of the course, learners would be able to:

CO1:Evaluate the animal tissue culture and transgenic technologies in the current world

CO2:Assess the available technologies to develop better breeds, improvise the wet markets and their demands

CO3: Appply the DNA forensics, molecular diagnostics, cloning, wildlife knowledge to conserve the wild life.

CO4: Correlate the need of the current trends medical technology and transgenics

### **Outline of Syllabus: (per session plan)**

| Module | Description                                          | No of Hours |
|--------|------------------------------------------------------|-------------|
| 1      | Introduction to ATC                                  | 15          |
| 2      | Introduction to transgenic technologies: GMA         | 15          |
| 3      | Applications of animal biotechnology                 | 15          |
| 4      | Animal Conservation Biotechnology -taxonomic studies | 15          |
|        | Total                                                | 60          |
| PRACT  | 30                                                   |             |

| Unit     | Торіс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. of<br>Hours/Credits |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Module 1 | Introduction to animal Tissue culture, Biology of<br>Cultures Cells, Laboratory design and Layout,<br>Equipment, Aseptic Technique,<br>Safety, Bioethics, and Validation methods, Culture<br>Vessels and Substrates, Media and Supplements,<br>Preparation, and sterilization, Culturing techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                      |
| Module 2 | Transgenesis: Introduction, livestock sperms and ovum,<br>artificial insemination, super ovulation, embryo-<br>splitting, embryo sexing, embryo transfer, Gene transfer<br>methods and Labeling techniques – radioisotope,<br>digoxigenin, In situ hybridization, Gene Delivery<br>methods<br>Identification techniques : Post transfection /<br>transduction of Gene transfer: CRISPR and PCR;<br>markers techniques, genome editing., Expression of<br>Green Fluorescent Protein                                                                                                                                                                                                                                                                                                                                                                      | 15                      |
| Module 3 | Transgenic animals: Mice, Cow, Pig, Sheep, Bird, Insect,<br>fish<br>Animal propagation Germ line transformation<br>technology. Breeds of livestock; genetic<br>characterization, marker assisted breeding, Testing for<br>genetic abnormalities, gene knock out technology and<br>animal models for human genetic disorders.<br>Introduction to Stem Cell Technology and its<br>applications. Application of biotechnology in disease<br>diagnosis; Foot-and mouth disease, Coccidiosis,<br>Trypanosomiasis, Theileriosis. Genetic modification in<br>Medicine - gene therapy, Hybridoma technology.<br>Transgenic animal production and application in<br>expression of therapeutic proteins. Immunological and<br>nucleic acid based methods for identification of animal<br>species, detection of meat food/feed adulteration with<br>animal protein | 15                      |
| Module 4 | Conservation Biology – Embryo transfer techniques.<br>cloning for conservation for conservation endangered<br>species, ethical, social and moral issues related to<br>cloning, in situ and ex situ preservation of germplasm,<br>modes of molecular evolution, Neutral theory of<br>Molecular evolution, genetic markers for taxonomic<br>purposes, comparing total genome Cladistics, DNA<br>barcodes, chromosome painting, establishing<br>molecular homology identification of wild animal<br>species Regenerative medicine                                                                                                                                                                                                                                                                                                                          | 15                      |

# PRACTICAL I

- 1. Sterilization techniques: Theory and Practical: Glass ware sterilization, Media sterilization, Laboratory sterilization
- 2. Sources of contamination and decontamination measures.
- 3. Preparation of Hanks Balanced salt solution
- 4. Preparation of Minimal Essential Growth medium
- 5. DNA isolation from animal tissue
- 6. Quantification of isolated DNA.
- 7. Resolving DNA on Agarose Gel.
- 8. Developmental biology in tissue regeneration
- 9. Isolation of nucleic acid from reminiscent samples like skin, meat, milk, hair and cooked and putrefied tissues

### **Suggested Readings**

1. Gene Transfer to Animal Cells Author(s) R.M. Twyman Publisher: Garland Science/BIOS Scientific Publishers, 2005 ISBN 0-203-48923-3 2-

2. Animal Transgenesis and Cloning. Author(s) Louis-Marie Houdebine Publisher: John Wiley & Sons, 2003 ISBN: 0-470-84827-8 3-

3. Animal Transgenesis and Cloning. Author(s) Louis-Marie Houdebine Publisher: John Wiley & Sons, 2003 ISBN: 0-470-84827-8 3

4. Animal Biotechnology 2<sup>nd</sup> edition. Author(s)/Editor(s): M. M. Ranga Publisher: Agrobios India

| Program: B.                    | Sc. Biotechnol                   | ogy (2020                          | Semester: VI            |                                                  |                                                                           |
|--------------------------------|----------------------------------|------------------------------------|-------------------------|--------------------------------------------------|---------------------------------------------------------------------------|
| Course: PLA                    | NT BIOTECI                       | INOLOG                             | Course Code: USMABT 604 |                                                  |                                                                           |
|                                | Teaching So                      | cheme                              | Evalu                   | ation Scheme                                     |                                                                           |
| Lecture<br>(Hours per<br>week) | Practical<br>(Hours per<br>week) | Tutorial<br>(Hours<br>per<br>week) | Credit                  | Continuous<br>Assessment<br>(CA)<br>(Marks - 25) | Semester End<br>Examinations (SEE)<br>(Marks-<br>75 in<br>Question Paper) |
| 04                             | 03                               |                                    | 2.5 + 1.5               | 25 Marks                                         | 75 Marks                                                                  |

- To develop an understanding of wide idea of plant tissue cultures and production of secondary metabolites
- To understand the concept of transgenic plants,
- To know the applications of biotechnology in the fields like agriculture for the production of biofertilizers, biopesticides and biosensors, biofuels.
- To know the significance Plant biotechnology and its techniques to introduce different breeds

### **Course Outcomes:**

After completion of the course, learners would be able to:

**CO1:** Understand the relevance of plant tissue culture techniques in large scale cultivation of plants and production of secondary metabolites

CO2: Know the methods of development of transgenic plants and their applications,

understanding and application in future research.

**CO3:** Know the applications of Biotechnology in agriculture and development of biofertilizers, iopesticides, biosensors as well as biofuels

### **Outline of Syllabus: (per session plan)**

| Module  | Description                                  | No of |
|---------|----------------------------------------------|-------|
|         |                                              | Hours |
| 1       | Plant Tissue Culture                         | 15    |
| 2       | Transgenic Plants                            | 15    |
| 3       | Biofertilizers, Biopesticides and Biosensors | 15    |
| 4       | IPR & Bioethics                              | 15    |
| Fotal   |                                              | 60    |
| PRACTIO | CALS                                         |       |

| Unit     | Торіс                                                                                                                                                                                 | No. of Hours |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Module 1 | Plant Tissue CulturePlant tissue cell and organ Culture-Medium for tissueculture, micropropagation, regeneration of plants,Organogenesis, callus culture, meristem tip culture, virus | 15           |

|           | elimination, Plant suspension cultures, Biosynthesis- batch,        |    |
|-----------|---------------------------------------------------------------------|----|
|           | continuous cultures,                                                |    |
|           | Plant cell culture as a system for production of fine               |    |
|           | <b>chemicals</b> - why culture plant cells, Introduction to primary |    |
|           | and secondary metabolism                                            |    |
|           | Production of alkaloids and other secondary metabolites,            |    |
|           | Metabolic engineering for production of secondary                   |    |
|           | metabolites, elicitation, immobilized plant cells,                  |    |
|           | biotransformation and hairy root cultures.                          |    |
| Module 2  | Transgenic Plants                                                   | 15 |
| wiouule 2 | 8                                                                   | 15 |
|           | Artificial (Direct DNA uptake by protoplast,                        |    |
|           | electroporation, liposome mediated, and particle gun                |    |
|           | transformation)                                                     |    |
|           | Natural method of gene transfer (Agrobacterium and                  |    |
|           | virus).                                                             |    |
|           | Applications of Transgenic Plants - Development of                  |    |
|           | Insect, pathogen and herbicide resistant plants.                    |    |
|           | Transgenic plants for improving nutrient content,                   |    |
|           | Modification of plant taste and appearance, plants as               |    |
|           | bioreactors, Edible vaccine, Golden rice                            |    |
| Module 3  | Biofertilizers, Biopesticides and Biosensors                        | 15 |
|           | Types of biofertilizers, Production, application. advantages        |    |
|           | and limitations: Introduction, advantages over chemical             |    |
|           | fertilizers,                                                        |    |
|           | Production                                                          |    |
|           | of <i>Rhizobium</i> , <i>Azotobacter</i> based                      |    |
|           | biofertilizers Study of biopesticides based                         |    |
|           |                                                                     |    |
|           | on <i>Bacillus thuringenesis</i> , Biofuels                         |    |
|           | Biosensors-Types of biosensors, Principle, working and              |    |
|           | applications                                                        |    |
| Module 4  | IPR & Bioethics                                                     | 15 |
|           | Intellectual property rights - Introduction, Types of IP-Trade      |    |
|           | secret, Patents, Copyright, plant variety protection,               |    |
|           | Trademarks, Copyright & Related Rights, Industrial                  |    |
|           | Design, Traditional Knowledge, Geographical Indications,            |    |
|           | International framework for the protection of IP. IP as a factor    |    |
|           | in R&D IPs of relevance to Biotechnology. Patenting genes           |    |
|           | and DNA sequences, Gene patents and genetic resources,              |    |
|           | patenting related to genetically modified organisms,                |    |
|           | Management of IPR Patenting biotech inventions                      |    |
|           | Introduction to History of GATT, WTO, WIPO and TRIPS                |    |
| l         | Bioethics: Concepts; Ethical Terms, Relevance to                    |    |
| l         | Biotechnology, Ethical and moral issues related to GMOs             |    |
|           | protectitionogy, Eulical and moral issues related to OWIOS          |    |

# PRACTICAL I

### (If applicable)

- Seed and explants sterilization
   Preparation of MS medium
   Study of callus culture, micropropagation
   Study of suspension culture,

- 5. Isolation of *Rhizobium* from root nodules
- 6. Isolation of *Azotobacter* from soil
- 7. Production of Biopolymer from Azotobacter
- 8. Study of Mycorrhiza
- 9. Case study for IPR

### **Suggested Readings**

- 1. Plant tissue Culture Kalyan Kumar Dey
- 2. Advanced Biotechnology R.C. Dubey
- 3. Comprehensive Biotechnology Ramavat & Mathur
- 4. Molecular Biotechnology Glick & Pasternak 4th Edition;
- 5. Biotechnology Fundamentals and Applications S.S.Purohit, 3rd edition
- 6. Recombinant DNA Biotechnology: expanding horizons BD Singh

Kalyani Publishers

7. Biotechnology - B. D. Singh. Kalyani Publishers

| Program: B.Sc Biotechnology (2021-22) | Semester: 6            |  |
|---------------------------------------|------------------------|--|
| Course: Advances in Biotechnology     | Course Code: USMABT605 |  |

|                                | Teachii                          | ng Scheme                    |        |       | Eva           | aluation Scheme                                                           |
|--------------------------------|----------------------------------|------------------------------|--------|-------|---------------|---------------------------------------------------------------------------|
| Lecture<br>(Hours per<br>week) | Practical<br>(Hours per<br>week) | Tutorial (Hours<br>per week) | Credit | Asses | ssment<br>(A) | Semester End Examinations<br>(SEE)<br>(Marks-<br>75 in Question<br>Paper) |
| 4                              | 4                                |                              | 2+2    | 2     | 25            | 75                                                                        |

The course is a comprehensive course covering various applications of biotechnology in the field of nanotechnology, reproductive biotechnology, molecular biotechnology and Bio-analytical techniques. The course also introduces the learner to the fundamentals and various applications of diagnostic tools, gene therapy and radioactive isotopes in biological sciences.

### **Course Outcomes:**

CO1. The emerging field of nano-biotechnology, their applications in biological sciences. CO2. The aspects of molecular biotechnology fields in diagnostics and therapeutics. CO3. The basic principle and applications of reproductive biotechnology and bio analytical techniques

| Outline of Syllabus: (per session plan) |                           |             |
|-----------------------------------------|---------------------------|-------------|
| Module                                  | Description               | No of Hours |
| 1                                       | Nano-biotechnology        | 15          |
| 2                                       | Healthcare biotechnology  | 15          |
| 3                                       | Molecular biotechnology   | 15          |
| 4                                       | Bio analytical techniques | 15          |
|                                         | Total                     | 60          |
| PRACTI                                  | CALS                      |             |

| Unit     |                                                                                                                                                                                                      | No. of<br>Hours/Credits |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Module 1 | Nano-biotechnology<br>Introduction to nanoparticles<br>Applications of nanomaterials in<br>Agriculture<br>Environment<br>Food<br>Cosmetics                                                           | 15                      |
| Module 2 | CosneticsHealthcare biotechnologyNature and importance of vaccinesClassification of vaccinesTraditional and modern methods of vaccine productionPreparation, standardization and storage of vaccines | 15                      |

| Module 3 | Molecular biotechnology<br>Molecular diagnostics<br>Protein therapeutics | 15 |
|----------|--------------------------------------------------------------------------|----|
|          | Nucleic acid as therapeutics                                             |    |
| Module 4 | Bio analytical techniques                                                | 15 |
|          | Principles of chromatography                                             |    |
|          | Types of chromatography                                                  |    |
|          | Gel permeation chromatography                                            |    |
|          | Affinity chromatography                                                  |    |
|          | Ion Exchange chromatography                                              |    |
| TOTAL    |                                                                          | 60 |

# PRACTICAL I (If applicable)

- 1. Chromatographic separation of molecules by molecular size exclusion.
- 2. Separation of biomolecules by affinity chromatography.
- 3. Preparation of vaccine.
- 4. Determination of TDP and TDT of heat killed vaccine
- 5. Sterility testing of the given vaccine.

### **Suggested Readings:**

- 1. B. Vishwananthan. Nanotechnology
- 2. M H Fulekar. Nanotechnology

3. Upadhyay Upadhyay and Nath. Biophysical chemistry. Himalaya Publishing House 4. Glick and Pasternak. Molecular biotechnology. principles and applications of recombinant DNA .4th edition. Washington Dc

5. Advances in gene biotechnology- S.N Jogdand

### **Reference Books:**

1. Sambamurthy K and Aushotosh Kar, 2006. Pharmaceutical biotechnology